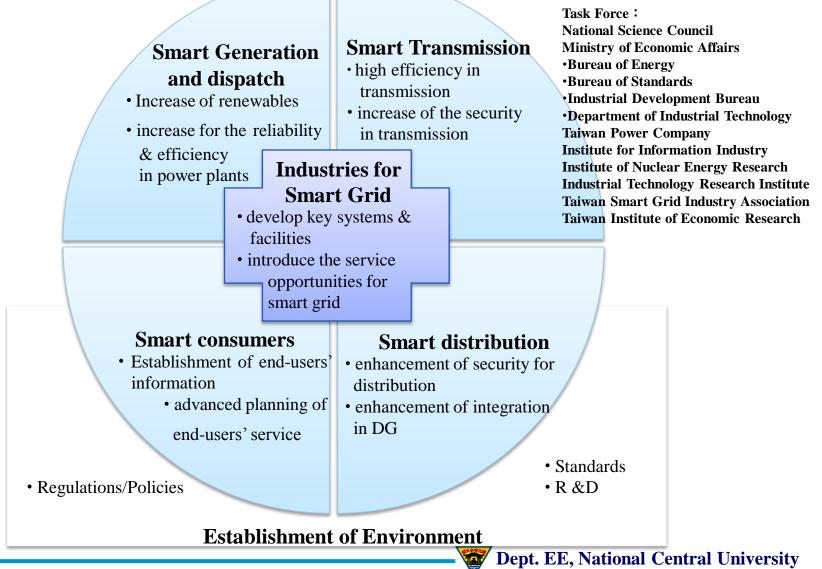
Development of Smart Grid in Taiwan

Frank, Faa-Jeng Lin

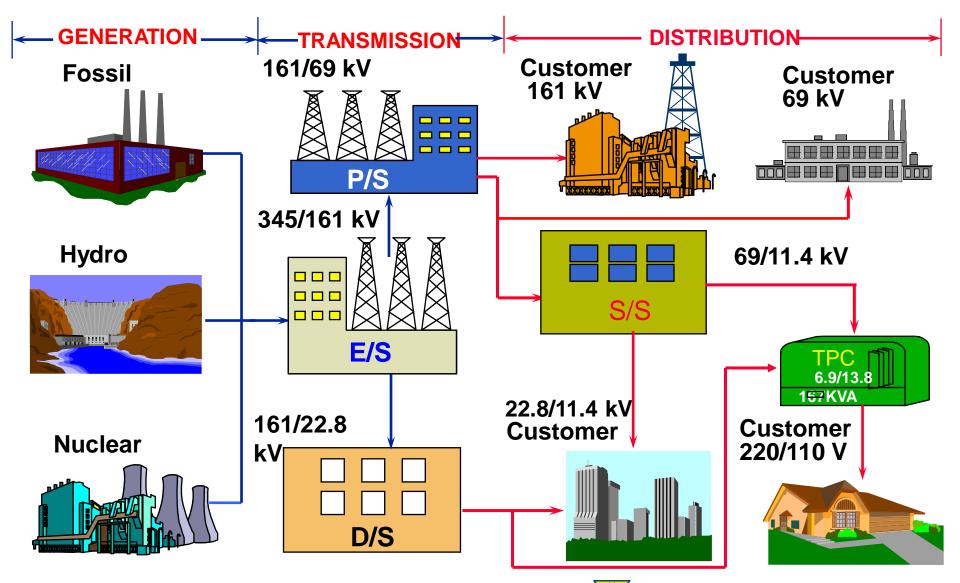
Chair, National Energy Project – Smart Grid and AMI Division, National Science Council Chair Professor, Dept. E. E. National Central University

linfj@ee.ncu.edu.tw


Outline

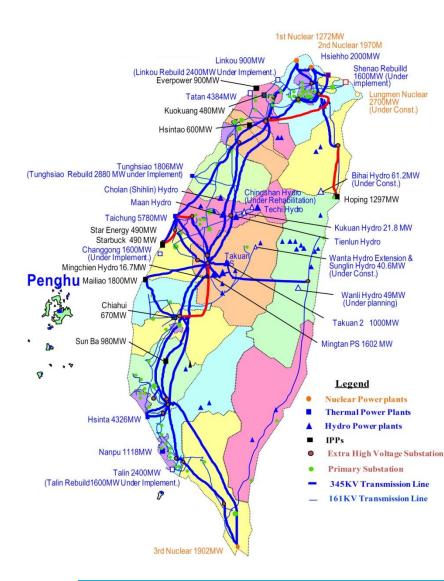
- Master Plan of Smart Grid in Taiwan
- Smart Grid Implementation Plan of Taipower
- National Energy Project Smart Grid and AMI, National Science Council
- National Energy Project II– Demo Site of Smart Grid and AMI
- Taiwan Smart Grid Industrial Association

Master Plan of Smart Grid in Taiwan


Master Plan of Smart Grid in Taiwan (2011~2030)

Smart Grid Implementation Plan of Taipower

Overview of Taipower's System



Overview of Taipower's System

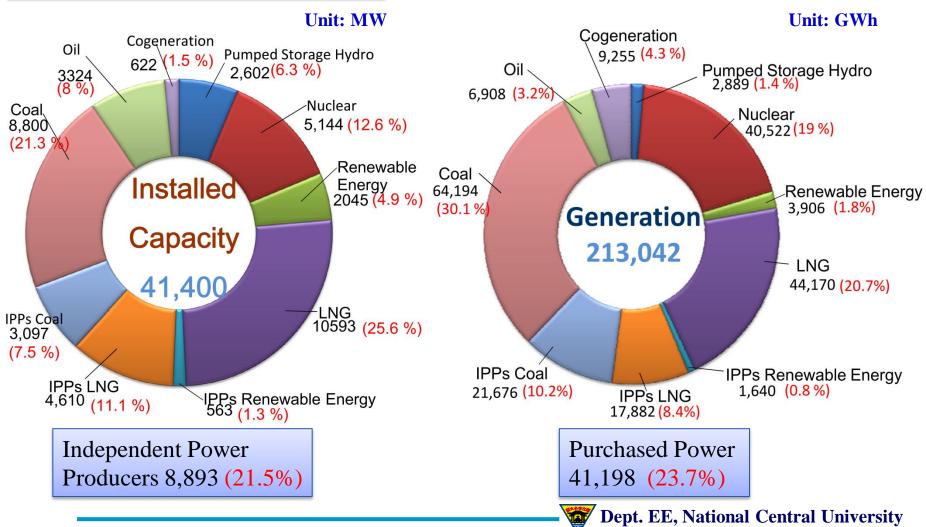
(1) Current Status of Energy Use

- a. Due to an extreme lack of indigenous energy resources, Taiwan relies on imported energy resources for 99% of its needs.
- b. Fossil fuels play a major role in the energy supply structure, having a tendency of excessive concentration.
- c. As an isolated power system, Taiwan Power network has not yet been connected to other power systems.
- d. Under the government's policy, energy prices have been failing to reasonably reflect the costs.

Development of Smart Grid in Taiwan Overview of Taipower's System (2) Taiwan Power System

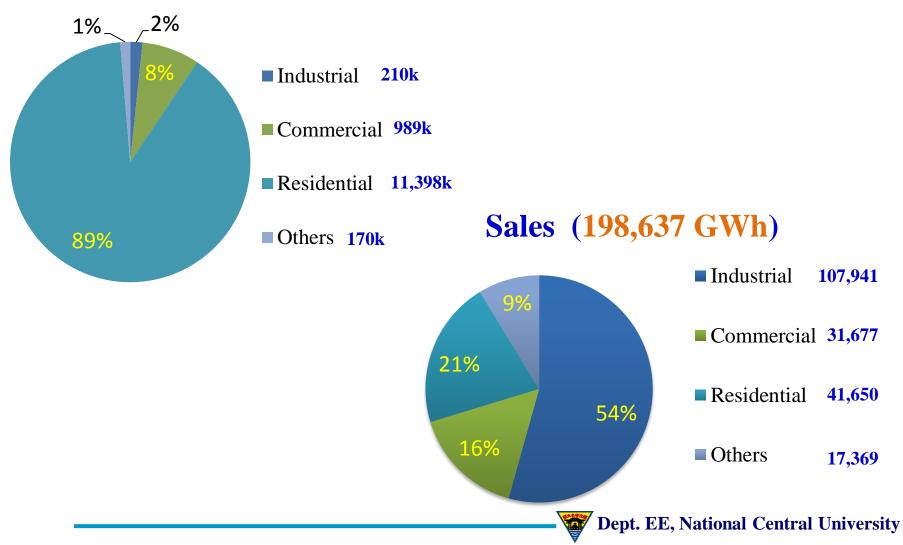
Installed Capacity in Year 2011: 41,400 MW

	Installed Capacity	MW		%
	Nuclear	5,144.00		12.6
	Thermal	22,717.60		54.90
	Oil		3,324.6	8.00
	Coal		8,800.0	21.30
Tainaruan	LNG		10,593.0	25.60
Taipower	Hydro	4,353.60		10.5
	Convential Hydro		1,751.6	4.20
	Pumped storage Hydro		2,602.0	6.30
	Wind	286.76		0.70
	PV	6.10		0.01
Sub	total of Taipower	32,508.06		78.50
	Thermal	7,707.10		18.60
	Coal		3,097.1	7.50
	LNG		4,610.0	11.10
IPP	Hydro	289.10		0.70
	Wind	236.10		0.50
	PV	38.30		0.01
	CoGeneration	622.00		1.50
S	ubtotal of IPP	8,892.60		21.5
Total	Installed Capacity	41,400.7		100


Substation	No.	MVA		ckt-km
EHV	28	56000	Transmission Lines	16.898
Primary	261	68450		- ,
Secondary	295	20728	Distribution Lines	339,057

Overview of Taipower's System

(3) Taiwan Power Profile (1/2)


Peak Load in Year 2011 : 33,787MW

Overview of Taipower's System

(3) Taiwan Power Profile (2/2)

No. of Customers (12,768 k)

10

Overview of Taipower's System

(4) Energy Policy

a. Steadily Reducing Nuclear Dependency

- a) No extension to life spans of existing plants, and the decommissioning plan should be launched as planned.
- b) The security of the 4th Nuclear Power Plant must be ensured prior its commercial operation.

b. Replacing Nuclear with LNG for Base Load

- a) LNG total installation capacity is expected to reach 26,532 MW (accounting for 40% of total capacity of power installations) by 2030.
- c. Promoting Renewable Energy Extensively
 - a) Under the campaign of "one thousand wind mills" and "one million sunshine roofs", the installed capacity of renewable energy is expected to reach 12,502 MW (accounting for 16% of total power installations) by 2030.

Smart Grid Implementation Plan In Taipower

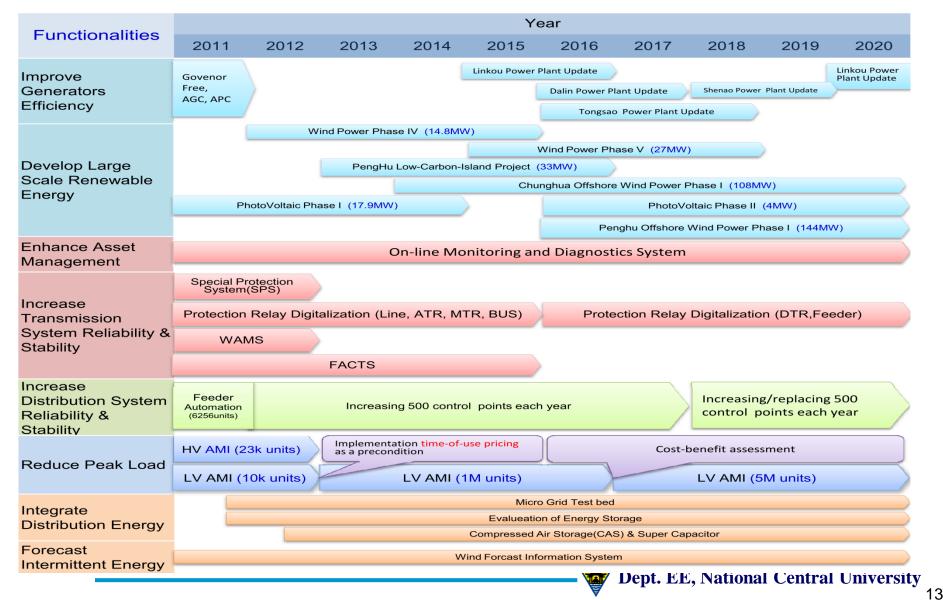
(1) Strategies

- a. Smart Generation & Dispatching
 - a) Upgrade traditional thermal power generation efficiency
 - b) Integrate large scale renewable energies

b. Smart Transmission

- a) Increase transmission grid efficiency and reliability using new technologies
- b)Enhance capability of asset management

c. Smart Distribution


- a) Improve the reliability of distribution network
- b) Increase the penetration of distributed renewable energy

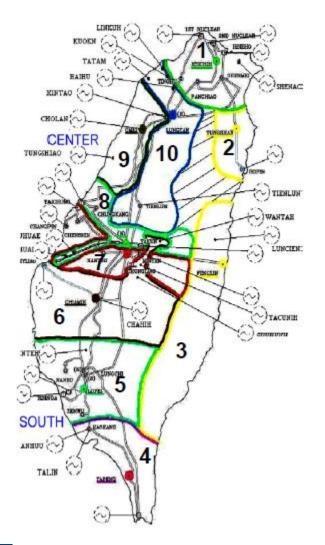
d. Smart Customer

a) Improve energy usage efficiency through customer participationb) Reduce peak load by way of demand response

Smart Grid Implementation Plan In Taipower

(2) Schedules

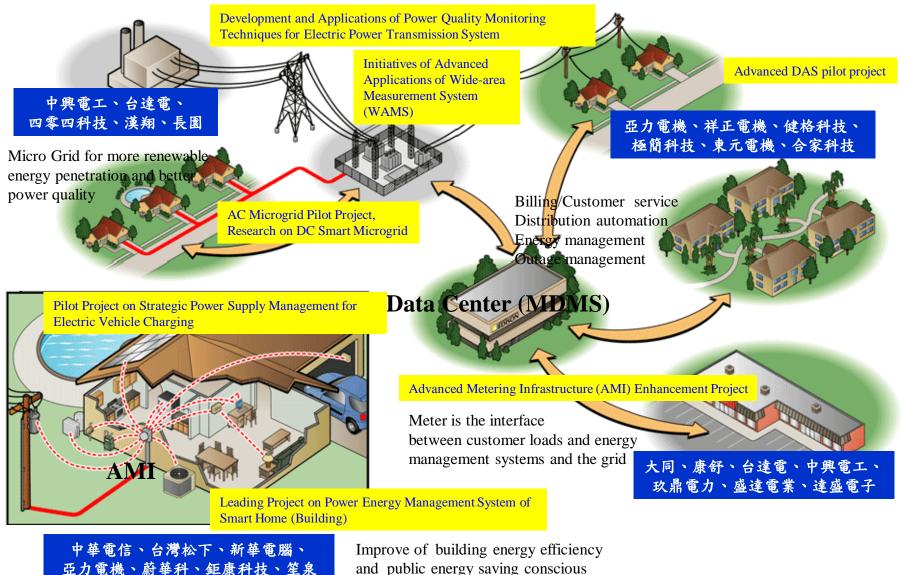
Objectives of Taipower's Smart Grid Action Plan (preliminary)


Benefit	Objective	2010	2020	Remark
Security & Reliability in power Grid	System average interruption duration index (SAIDI)	22min/ customer • year	17.6min/ customer • year	1 20%
Energy efficiency	Efficiency in thermal plants	42.52%	43.58%	1 2.5%
Renewable	Percentage of installed capacities	4.7%	15%	2025 20%
Energy conservation & Carbon reduction	Green gas emission	81 million tons	80 million tons (reduce to meet the standard in 2005)	

W

Extension the Renewable and its Penetration Capability

- Renewable in Taipower focus on PV and Wind
- Divide Taipower's grid to 10 Renewable Deployment Regions (RDR) for Renewable expansion purpose.
- Investment evaluation of each project on RDR basis
 - Investigate Potential Renewable resources of each RDR
 - Examine Effective Load Carrying Capability
 - Carry out Cost/Benefit analysis of each investment
 - Example: Implement Submarine cable between Taiwan and the Poun-Hu archipelago wind farm


National Energy Project – Smart Grid and AMI, National Science Council

National Energy Project – Smart Grid and AMI

Vision	Develop the smart grid and AMI industry in Taiwan to establish high quality, high efficiency, user-oriented and environment- friendly power system to reduce CO ₂ emission, increase energy efficiency and enhance energy security.
Strategy	Tying in closely with the smart grid developing schedule of Taiwan Power Company, integrate the research abilities of industry and academia to establish smart grid and support the power facilities industry in Taiwan.
Manner	Promote AMI, microgrid, smart home (building) energy management system, advanced distribution automation four pilot projects by NSC to develop key technologies of smart grid and AMI and ensure the merging of the developed technologies into the power system in Taiwan will be reliable and feasible.

Development of Smart Grid in Taiwan National Energy Project – Smart Grid and AMI

and public energy saving conscious

Objectives of Smart Grid and AMI Project

- 1. Use the developed technologies of distribution automation and microgrid to enhance the total installed capacity of renewable energy and ensure the total renewable energy generated electricity increasing to 20% of the total electricity supply to reduce 40 million tons of carbon dioxide emissions in 2025.
- Promote smart home (building) energy management technology to increase 20% energy usage efficiency in 2015 compared to 2005.
- 3. Implementing the developed key technologies of smart grid and AMI, the install capacity of distributed generations will be 17.8GW and create 120 billions NT and more than 20,000 jobs per year from 2010 to 2025. There are about 60 billions NT market in Smart Grid and more than 10,000 jobs every year.

19

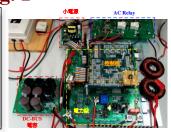
AC Microgrid Pilot Project – Major Achievement Establish Microgrid Test Field (Fig. 1)

• Hundred KW scale of Microgrid system with Zone 1~3, distributed renewable energy generation systems, micro turbine generator, energy storage system, and controllable loads. The MGCC and protection system can be used to perform <u>seamless transition control</u> between grid connected and stand alone operation successfully. It is the only one outdoor microgrid test bed in Taiwan for research.

Develo	p Multi F	unctional 5 kVA	<u>Bi-dir</u>	rectional]	Inverter	(Fig. 2	2
							117

Item	Spec.	Remark
AC Voltage	1φ220 V/60 Hz	
DC Voltage	380 ± 20 Vdc	
Dowon Footon	>0.99	Charge Mode
Power Factor	+0.9 ~ 1 ~ -0.9	Discharge Mode
Efficiency	>96%	Max.
Rate Power	5 kVA	
Vac(UPS Mode)	220 Vac ± 5 %	VDE
THDv	< 5 %	linear Load

Develop Grid-tied Inverter with Network Communication Control of Real and Reactive Power (Fig. 3)

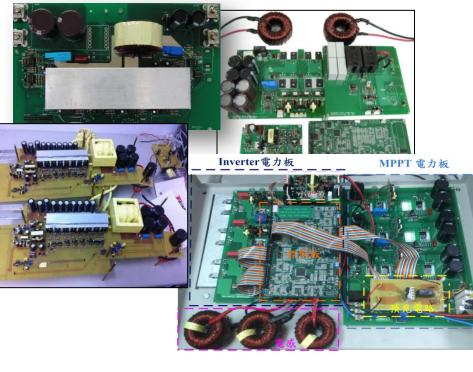

Item	Spec.	Remark
AC Voltage	13022UV/60 HZ	Over Current /under voltage protection
DC Voltage	170 V~250 V	Over/Under Voltage protection
Rate Power	1 kVA	
Efficiency	Inverter (92%)/Boost (90%)/MPPT (>97%)	
Network Communication	EIA-485	From Labview to Moxa Nport

Develop Energy Management System Platform (Fig. 4)


The advanced algorithm is developed in the SCADA platform to solve <u>real time power flow</u> for <u>three phase</u> distributed network with <u>high R/X ratio and multiple DGs.</u> The platform can also perform the <u>state estimation</u>, <u>weather forecast</u>, <u>load prediction</u>, <u>demand</u> responses to achieve optimal power flow control.

Advanced Metering Infrastructure(AMI) Enhancement Project – Major Achievement

- AMI communication architecture and platform
- AMI Value-added Services on meter data management platform
- Developing the Rule-based Validation, Estimation and Editing (VEE) tool with high flexibility to utility requirement
- Providing the short-term load forecasting for reference of energy distribution and load management
- Enhancing security of AMI, providing light-weight certification architecture for AMI devices and staff ID authentication
- AMI Demo Site Establishment
- In min-shang residential community, an AMI system with 650 meters is deployed and operating well, consistently
- In NCU test bed
 - High/Low-voltage Hybrid AMI systems are deployed to monitor whole campus load profile
 - Deploying demand response system which followed the open standard -OpenADR and integrated to campus EMS for a real practice
- Support for Smart-Meter Industry Development
- AMI technology transferred to Companies, Moxa, AcBel, Tatung, Joseph-Tech, Delta and Arch Meter applied in Tai-power AMI system
- Coordinating local vendors to achieve a common interface for products interoperability



Residential demo site

Microgrid Pilot Project (DC Smart Microgrid)- Significant Outcomes

Specifications and Features of the Technique Breakthrough

- **3-Phase Bi-directional Converter**
 - Accommodate wide inductance variation (over 9 times)
 - Comply with VDE-AR-N4105
 - Regulate dc-bus voltage (360 ~ 400V) by following a linear load-line relationship
 - Realize multi-functions in one set of converter, including grid connection, rectification and UPS
 - Highest efficiency of 98%, PF of 0 ~ 1 and power rating of 10 kW
- Maximum Power Point Tracker
 - Cover a wide input voltage range of 0 ~ 850V
 - Achieve step-down, step-up and smooth transition features
 - 3-modules can be independent or in parallel operation and with the feature of uniform current distribution
 - Highest efficiency of 98.5%
- Full Cell Converter
 - Input voltage: 42 V, output voltage: 380 V
 - Highest efficiency: 96%, power rating: 5 kW
 - Parallel operation
- DC Loads input voltage 380 ± 20V
 - Air Conditioner Power rating: 1.5 kW
 - Electric Scooter Power rating: 1.5 kW
 - LED Lighting Power rating: 100 W
 - Projector Power rating: 200 W
- Bi directional Charger/Discharger
 - ◆ Voltage conversion: 96⇔380 V
 - Highest efficiency: 96%, Power rating: 6 k
 - Charger/discharger in one set
- Active Islanding Detection
- **•**₂₂ Fast detection in one line cycle

Advanced Distribution Automation Systems

Transformer Management System(TMS)

- Development of Transformer Terminal Unit(TTU) to measure oil temperature current and power delivered
- Integration of hybrid communication with TMS
- Automatic mapping display of transformers with abnormal operation condition
- Execution of demand response to achieve energy conservation

Supervisory Control of PV systems

- Enhance PV penetration by control of PV inverters
- Assessment of distribution system impact due to PV integration
- Real power and reactive power control of PV inverters by intelligent FTU to reduce the system impact by PV systems.

Hybrid Communication System

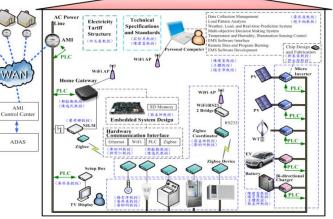
- Feasibility analysis of hybrid communication system to support various ADAS applications
- Communication schemes performance analysis of hybrid communication systems with PL and wireless
- Integration test of hybrid communication systems consisting of BLPC,NPLC and optical fiber on actual Taipower distribution system

Application functions of ADAS systems

- Fault Detection, Isolation and Service Restoration (FDIR)
- Update of distribution network topology and real time database (RTDB)
- Fault restoration of laterals
- Development of ADAS application functions

Development of Intelligent FTU and Fault Detector(FD)

- Identify fault location with FD using hybrid communication system
- Develop intelligent FTU to support lateral fault restoration and achieve supervisory control of PV systems and smart appliances
- Integrate FTU and FD with master control station to achieve real time mapping display of system operation status.

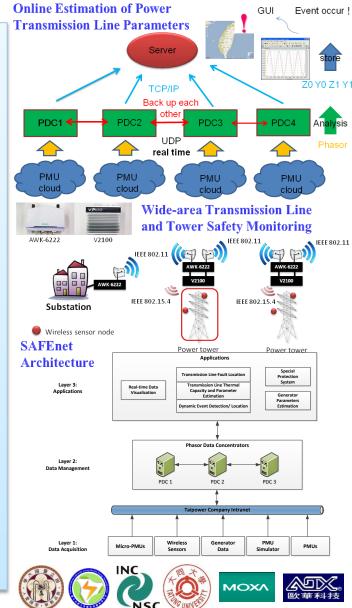

Smart Home (Building) Energy Management System Pilot Project – Significant Achievements

Control Strategies and AMI for SH(B)EMS

- Modularized EMS function control, including renewable energies and the storage system
- Capabilities of preference setting and Demand Response
- Deployment of building AMI
- Accommodating mobile device and IPTV as In-Home Display

Non-intrusive Line Monitoring (NILM) Device

- Measuring power consumption of appliances in 2 seconds
- Accuracy up to 90% above
- Providing status analysis of appliance and user behavior of using electricity
- Applications of Clouds technologies and data base
- Minimized size (10x6cm), cost effective solution (US\$30-50)
- Technical transferring to vendors
- Vendors involvement and cooperation in R&D
- R&D cooperation with Netvox, Nation Instruments, Panasonic, Chunghwa Telecom, Megawin Technology, Raydium, ABB, Spirox, III and ITRI
- Devices developed including Zigbee, PLC, Home Gateway EMS HMI, Inverters, and Energy control chip designs


2nd year: Smart Building EMS demonstration
3rd year: System Demonstration and Cost/Benefit Analysis

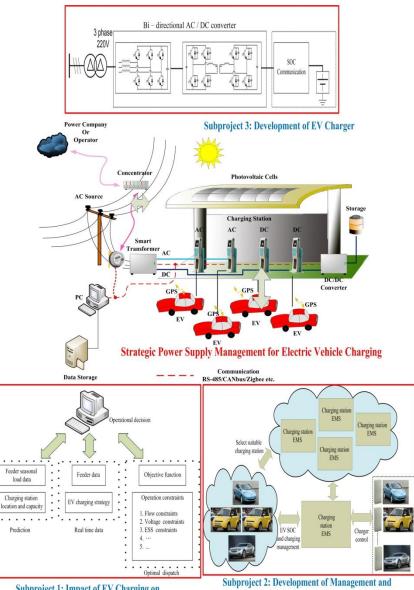
Initiatives of Advanced Applications of WAMS

- **Parameter Estimation**: PMU data is simulated and transmitted to phasor data concentrators (PDC) to estimate parameters of power transmission lines.
- · Dynamic thermal rating scheme with weather forecast information.
- **Wide-area Measurement System**: Measurements of power transmission lines and power tower are collected by a embedded gateway via IEEE 802.15.4. Selected power towers are equipped with long-range Wi-Fi access point to form a high-speed, free of charge and stable platform for WAMS.
- Fault detection, classification and location on transmission lines.
- A secured and fault-tolerant database with GUI for geo-data visualization.
- On-line Measurement-based Model Parameter Estimation for Synchronous Generators / Optimal PMU Placement
- Off-line Measurement: 6 fossil-fuel generators and 1 nuclear reactor
- **Optimal PMU Placement**: Satisfying the requirements of the power system observability based on the grid structure and EHV/UHV transmission substation of TaiPower Company.
- Development of Micro PMU Prototype
- **FPGA-based Micro-PMU**: Algorithm implementation and integration of embedded-systems.
- **Synchronized Phasor Measurement**: Developing three-phase voltage phasor measurement device with ADX Corp.
- **SAFEnet Communication Architecture**: Providing comprehensive system-wide grid protection.
- Development of Response-based Special Protection System
- Completed the **Treatment Scheme and Analysis for Vulnerability and Accidents** of TaiPower Grid.

Development and Applications of Power Quality Monitoring Techniques for Transmission System - Highlights

Subproject 2: Development and Implementation Power quality (PQ) monitoring techniques, standards, and system of Integrated PQ Measurement and Information System development transmission system • Design of real-time tracking and identification algorithm to support power grid Subproject 1: Identifying and Tracking Sources of PQ Disturbances and Faults through Realization of monitoring mechanism and implementation for PQ disturbances. Monitoring Mechanism GUI • Planning of fixed network-type of installations of PQ monitoring PQ Signal Analysis Subproject 4: Voltage Control and PQ mechanisms to provide the necessary parameters of the power Improvement of Area Transmission System, system information and mitigation of PQ events. Distribution Substation Network/ Load Management • Development of advanced PQ signal analysis method and Smart PQ Analyzer Vetwork Smart PQ Analyzer investigation of preventive solutions to PQ disturbances. Distributed Generation Subproject 5: Study of Adopting FACTS PO analysis and mitigation strategies of implementation for devices in power network for preventive and remedial PO Strategy transmission system • Planning of deployment of smart devices with PQ analysis capabilities in the Smart PO Analyzer Subproject 3: Development of Smart Real-time PQ Detecting and Analyzing Apparatus grid to assess the quality information. • Investigation of current system voltage control practices, 1.Global coverage (98%). Not by any compensation principles, and DER operation characteristics. weather. 2. Precision ± 1 µsec (receive GPS • Study of STATCOM application in Taipower and capacitor signal); ± 0.1 ppm to drift (at LCD temperature controlled environment); Hardware of power quality detection planning for enhancement of voltage quality. ± 25 ppm at 25°C (Backup frequency) GPS Serial PT Smart MSP430 Higher-Manufacturers joining in early stage of level F47187 meter UART CT operation RS232 platform UART • Taipower, ADX, and APPA. DSP/ FPGA Serial RS232 EEPROM • Joined work includes PQ improvement strategies, 1. The sampling rate is 4096 sample/sec. 1. Power quality detection 2. Time reference standards of power quality event 2. The sampling resolution is 16 bits planning of monitoring mechanisms, and design of 3. The sampling signals have three voltages, source. three currents, and a neutral current signals. 3. Harmonic analysis real-time PQ analyzer. 4. Calculation of the steady-state voltage, current, power, 4. MODBUS and other parameters. 5. MODBUS

Strategic Power Supply Management for Electric Vehicle Charging


Impact of EV Charging on Distribution Network Operation

- >Develop EV charging station power supply scheme
- >Analyze power and voltage quality measurements of substations feeders and charging stations of EV demonstrative projects
- >Determine evaluation indices for voltage drop, line loss and flow congestion for different number of EV charging stations an locations.
- >Perform OpenDSS-based load flow analysis
- >Establish operation models for EV charging stations
- Development of management and communication schemes for EV charging station
 - Develop of an EMS embedded Smart Transformer for EV charging stations
 - >Design EMS schemes for EV charging stations
 - >Design EV chargers control schemes
 - >Develop digital controller for on-board EV chargers

Development of EV charger

- >Design a 3 kW smart chargers
- >Develop a bi-directional AC/DC converter
- >Develop protocol for EV charger and battery communications

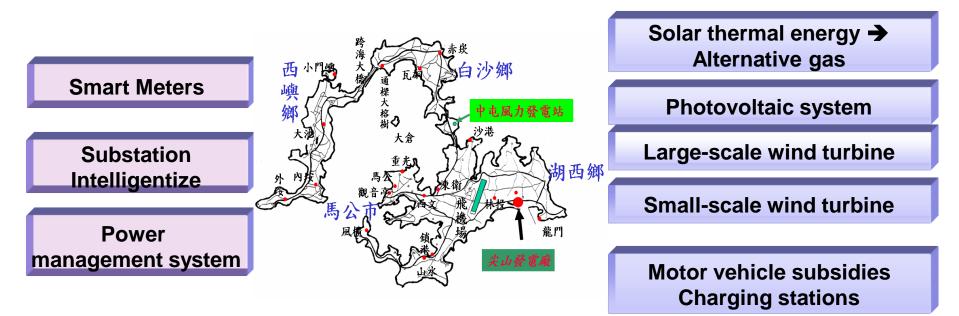
Industry-University Collaboration Activities

Subproject 1: Impact of EV Charging on Distribution Network Operations

Subproject 2: Development of Management and Communication Schemes for EV Charging Station

National Energy Project II– Demo Site of Smart Grid and AMI, National Science Council

Development and Goals of the 2nd phase of Smart Grid and AMI Master Project


Between 2013 and 2017, we are planning to continue working after results from the 1st phase of the project and to complete the key technology transfer of smart gird and AMI, such as

- Commercializing, cooperating with the promotion of smart meters and electric vehicles
- Completing power energy and electric vehicle energy supply management system lead-in (ex. time electrovalence, demand response, etc.)
- Cooperating with the power transmission and distribution plan led by Taiwan Power Company (TPC)
- Promoting the project achievements of micro-grid (AC and DC), advanced distribution automation, wide area measurement system, quality monitoring of power transmission system on TPC's system
- Promoting smart home (building) power management technology for household users
- Building the first demo site of smart grid and AMI in Penghu, Taiwan.

Overall Demonstration to Promote the Idea of Smart Grid and AMI

Using results from the 1st phase of this project, cooperating with the Executive Yuan to implement Low Carbon Island Project in Penghu archipelago (50Km from Taiwan, inhabitants 89000, average load 45MW, peak load 83MW), as well as with the Bureau of Energy, Ministry of Economic Affairs and TPC to promote AMI, micro grid, advanced power distribution, smart home and building energy management, and electric vehicle energy supply management.

Visions and Objectives of Low Carbon Island Project in Penghu

To complete a field demonstration of low-carbon green living, to apply low-carbon living service and carbon reduction technology, to conjoin with tourism service, and to expand the application of green energy products, in order to prompt Taiwan accelerating the move towards one of the low carbon countries. Citizens participate in energy conservation activities to create electricity negative growth in low-carbon homes.

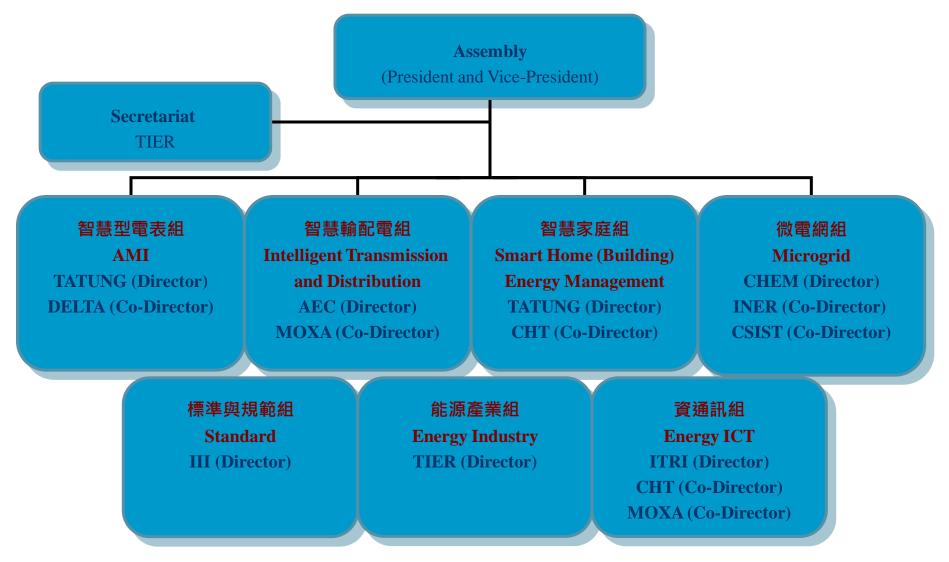
- As the country's first, it can be compared with the world and it will definitely reach a certain size.
- Promoting Penghu to be the benchmark for world-class low-carbon island.
- In 2015, the target of having a decrease of 50% of carbon emissions compared to 2005 will be reached.
- In 2015, renewable energy will supply more than 50% of the total energy demand.
- Electricity consumption growth rate will be dropped by 7%, and per capita carbon emission will be reduced to 2.1 tons per year.
- Establishing investment pattern of Taiwan's first large-scale wind turbine in prefectural stake (the benefit of the island will be 1.6 times more).

Development of Smart Grid in Taiwan Schedule of the Second Phase of Smart Grid Master Program

	Goals 2	013	2014	2015	2016	2017	2018	2019	2020	2021
A	Planning of Smart Grid and Smart Grid Industry in									
	Taiwan (program office cooperated with Bureau of Energy andTaipower)									
B	Smart Community Demo Project Planning and Promotion (Penghu	3								
С	Key Technology Development of Microgrid									
D	Advanced Metering Infrastructure									
E	Advanced distribution automation									
F	Smart home and building energy management									
G	Electric vehicle energy supply management									
Η	Smart grid and AMI standard establishment									
Ι	Renewable energy integration and energy storage application (VPP)							A22	461/21207	
J	Taiwan Power Company smart grid related development	-						and and a		

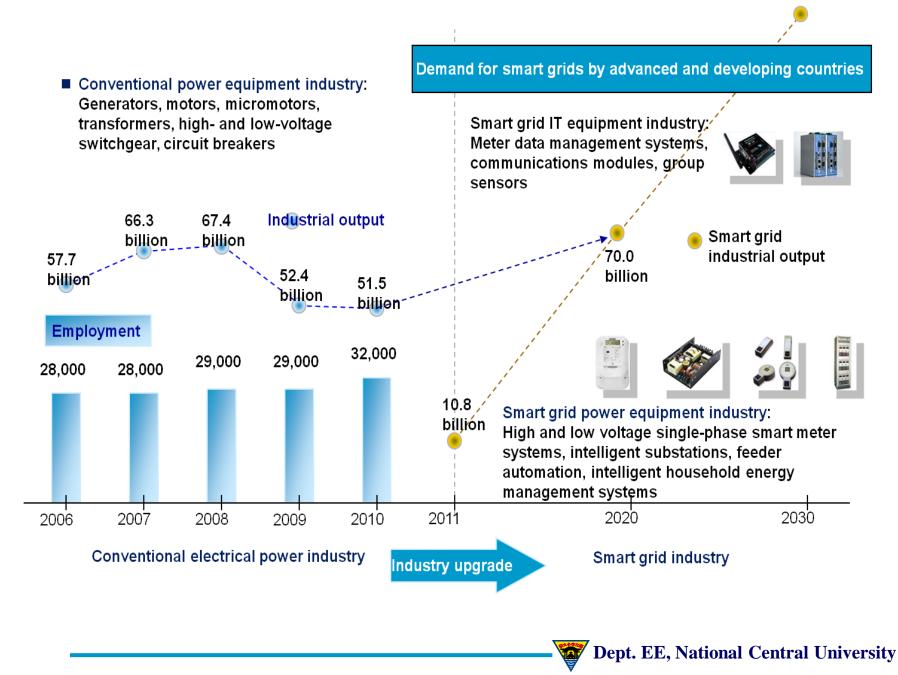
Dept. EE, National Central University 32

Taiwan Smart Grid Industrial Association


Taiwan Smart Grid Industry Association (TSGIA)

Object

- To coordinate the development of power system, power electronics and ICT to develop the smart grid industry in Taiwan.
- Mission
 - □ Build up design and integration capabilities of smart grid.
 - Estabilish a platform for integration and exchanging smart grid technology.
 - Bridge the industry to the government to create an industryfriendly society and policy structure encouraging the development of smart grid industry.
 - Assist Taiwan smart grid industry to reinforce the opportunities of international market shares.



Structure of TSGIA

ALLIS ELECTRIC CO (AEC), Chung-Hsin Electric and Machinery Manufacturing Corp. (CHEM), Institute for Information industry (III), Industrial Technology Research Institute (ITRI), Institute of Nuclear Energy Research (INER), CHUNG-SHAN INSTITUTE OF SCIENCE & TECHNOLOGY (CSIST), Chunghwa Telecom(CHT)

Taiwan AMI Components Provider

The high voltage AMI System of Taiwan Power Company is constructed by Tatung (with Institute for Information Industry). MIU is provided by Tatung and CHEM
 The scale of low voltage AMI is about 6 million smart meters.

Component	Provider in Taiwan
Smart Meter	TATUNG, CHEM, SHIHLIN(Arch), DELTA,AcBel, Itron, Danielgroup, Schneider Taiwan
Communications Module	AcBel, DELTA Networks, Billion Electric, TATUNG , Arch, MOXA, SensingTEK, Itron, ITRI
Concentrator or MIU	MOXA, AcBel, DELTA Networks, ZyXEL, Itron, ITRI
AMI Sytem	III, TATUNG, DELTA, Chunghwa Telecom, Ladis+Gyr \ Itron, Altos , ITRI
Meter Data Management System(MDMS)	TATUNG , III,Chunghwa Telecom, eMeter, Oracle, Ladis+Gyr, Itron, Altos

資料來源:能源國家型科技計畫-智慧電網與先進讀表主軸專案計畫總計畫 NSC 100-3113-P-008 -001 -PO

Taiwan DAS Equipments Provider

Sort	Equipment	Provider
Power	Transformer Oil Gas	CHEM, Fortune, SHIHLIN,
Distributi	Analyzer	TATUNG, PIC(G.E)
on	Pad- & Pole-Mounted	TATUNG, SHIHLIN, Fortune, ALLIS
Equipmen	Transformers	
t)	Recloser	Fortune, SHIHLIN
	Automatic Line Switches	CHEM, Fortune, ALLIS, SHIHLIN,
		TECO, TATUNG, Schneider Taiwan
Distributi	RTU, FRTU, FTU	CHEM, Connet, HCE, TATUNG
on Feeder	SCADA System	CHEM, Connet, HCE, TATUNG,
Automati		Chunghwa Telecom, Siemens 、 ACS 、
on System		SNC
	SCADA Server	ADVANTECH, HP
	GPRS/Fiber MODEM	Korenix, MOXA, EDIMAX
	Switch, Router	Connet, Wallnet, TATUNG, MOXA,
		Cisco, Altran

資料來源:能源國家型科技計畫-智慧電網與先進讀表主軸專案計畫總計畫 NSC 100-3113-P-008 -001 -PO

History and Trend of Smart Appliances

Traditional Appliances

2000

1949

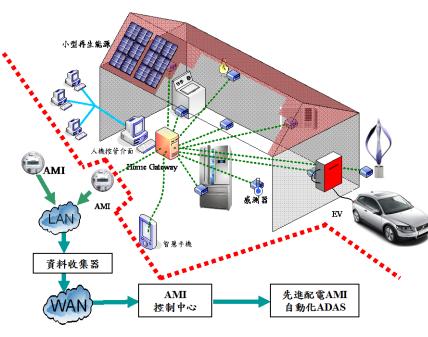
First Generation Smart Appliances

Display current power costs and have automatic driving function, such as energysaving frequency conversion appliances.

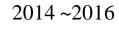
Sharp Multi-spots Induction Reduce 64% power consumption by adjusting the temperature of the refrigerator automatically.

Automatically judge the amount of refuse Automatically regulate power supply and suction

Automatically regulate the water volume Zero-consumption Reduce 76% of power consumption from digital standby.



Display temperature and power consumption Decrease electric power to 45W(as same electric fan) Reduce 26% of power consumption


Second Generation Smart Appliances (Future)

An household appliances integration system to truly reflect power cost by integrating ICT technologies with Smart appliances and expanding users' involvement.

The time for smart appliances to enter general household

(1) Standardize the information connection system of smart appliances(2) Establish TOU pricing system.

Reference : 能源國家型科技計畫 - 智慧電網與先進讀表主軸專案計畫總計畫 NSC 100-3113-P-008 -001 -PO

Dept. EE, National Central University

Taiwan Smart Home and Building Equipment Provider

Equipment	Provider
Intelligent home appliances	EHome : Cheng Xiang Control4 EMS : Justyle, ITRI
Electric vehicles charger	DELTA, ALLIS, LITEON, Fortune, Schneider Taiwan, ITRI
Power management chips	VIA
Energy management system (Interface)	Panasonic Taiwan, Chunghwa Telecom, INTEC, Tung-Chou, ITRI, Schneider Taiwan
Home Gateway	Panasonic Taiwan, Micortime Chunghwa Telecom, ITRI, Schneider Taiwan
Human-machine interface control	Panasonic Taiwan, Chunghwa Telecom, ITRI, Schneider Taiwan
Load type of control interface	Netvox, JosephTech
Wireless sensors	ZigBee : ICP DAS, Netvox
Wired sensors	Hom-thai, Winling
Communications Module	PLC : AcBel, Billion, ITRI ZigBee : ICP DAS, Netvox , ITRI Wi-Fi , Ethernet :MOXA

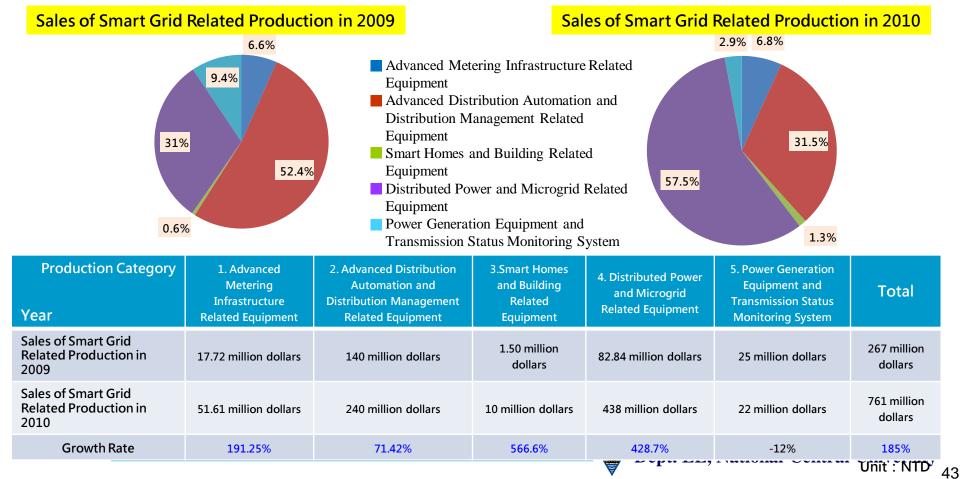

Taiwan Microgrid and DG Equipment Provider

Equipment	Provider
DG – Stationary fuel cell	CHEM, ITRI
DG - PV	Unienergy, HELIUS, ALLIS, Lucky Power, JosephTech, MOTECH, GPI, DELTA, ITRI, TATUNG
DG – Small wind turbine	Hi-VAWT, PGC, Boltun, iWIND, STU, ITRI, TATUNG
DG – Micro turbine	AIDC
DG – Energy saving system	FEMTC, AcBel, ALLIS, Lucky Power, ITRI, CSISTDUP
Electric vehicle quick charger	ALLIS, DELTA, LITEON, Fortune, Schneider Taiwan, ITRI
Bi-directional dc-dc converter	CHEM, DELTA, Ablerex, MOTECH , INER, ITRI, TATUNG
Micro Inverter	ALLIS, DELTA, Fortune, CHEM, Jubilee, Top Tower, GEOPROTEK, Schneider Taiwan, ITRI, TATUNG
Maximum Power Point Tracker	DELTA, INER, ITRI
Local SCADA	ALLIS, ADX, 榮成興業, CHEM, Chunghwa Telecom, ITRI, TATUNG
LVRT (AVR)	МОТЕСН
Distribution SVC	DELTA, TAIK
Distribution STATCOM	DELTA
AVR	DELTA , CHEM
Power controller / conditioner	INER
Loop Balance Controller (LBC)	NA
Static switch	榮成興業
Protective Relay	ALLIS, TAIK, Schneider Taiwan
Communication Equipment	MOXA

A

Results of Smart Grid Industry Survey in Taiwan-1

- In 2009, the total sales of smart grid products are 2.13 billion dollars, among which, 1.52 billion dollars, 71.4% of the total sales, are from domestic sales and 0.61 billion dollars, 28.6% of the total sales, are from products sold abroad. In 2010, the total sales of smart grid products are 5.549 billion dollars, among which, 2.87 billion dollars, 51.6% of the total sales, are from domestic sales and 2.68 billion dollars, 48.4% of the total sales, are from products sold abroad. This shows that the demand of our domestic smart grid products is increasing significantly with the average growth rate of 20% from 2011 to 2015.
- The main export equipment include power transmission switching mechanism, concentrators, transformer • remote monitoring module, raw material of smart grid products, exchange board, embedded computers, home display unit, converter, electric meter detection equipment and active power filter.



	Domestic	Overseas	Total
Total Sales of Smart Grid Products in 2009	1.50 billion dollars	0.61 billion dollars	2.13 billion dollars
Total Sales of Smart Grid Products in 2010	2.866 billion dollars	2.684 billion dollars	5.55 billion dollars
Growth Rate	88.55%	340%	160.56%

- Notes : (1) Due to some companies readjusted their category of their smart grid products in 2011, the result of the second survey might different from the first one.
 - (2) This data is based on the questionnaire survey from 21 companies of the smart grid industry, but lacking of the guestionnaire from Hsiang Cheng Electric, Teco, Shih Lin Electric and Controlnet.

Results of Smart Grid Industry Survey in Taiwan-2

This survey is also aim at the value of sales of "Advanced Metering Infrastructure Related Equipment "," Advanced Distribution Automation and Distribution Management Related Equipment", "Smart Homes and Building Related Equipment", "Distributed Power and Microgrid Related Equipment", "Power Generation Equipment and Transmission Status Monitoring System" five categories. The result shows: the value of other categories increase significantly except "Power Generation Equipment and Transmission Status Monitoring System". In 2010, the annual sales of "Smart Homes and Building Related Equipment" increase the most which is 5 times the original sales. Ranked in second place is "Distributed Power and Microgrid Related Equipment", which the annual sales increase about four times the original sales.

Results of Smart Grid Industry Survey in Taiwan-3

Classify by region, in 2009-2010, the major markets of Taiwanese smart grid related products are as follow : China, Japan, South Korea, India, Australia, Germany, United Kingdom, USA, Canada, Mexico, Brazil, South Africa. Factories are expecting to develop Japan, China, Southeast Asia, India, Europe, Middle Asia, USA, South America.

	Taoyuan County: Allis Electric, Chung Hsin Electric & Machinery, 達創, Fortune Electric. Isinchu City: Iegawin Technology	Most of domestic produce smart grid are located in Na Taoyuan County, H Taichung City. Othe foreign locations a Shanghai, Jiangs Guangzhou, Don (Germany).	related products ew Taipei City, sinchu City and erwise, most of are in Qingdao, su, Shenzhen, gguan, Berlin
End /	2009	2010	Growth Rate
			Growth Rate
	1.730 billion dollars	2.057 billion dollars	18.9%
	¢.		unit : NTD
ocation of Producing Taiwanese Sm	nart Grid Related Products	Dent FF Nation	al Central University

Smart Grid Industry Technology Roadmap

	Phase	Outcome	Steps	Comments	Keys for Vendors
1	Innovation and Validation	Establish proof of concept and reliability Measures	 Innovation developed Engineering tests Pilots 	 Dominated by large utilities, large grid vendors, labs Testing in cooperation with utilities or large energy users, often with funding from state (e.g. California's PIER program) or federal programs (e.g. DOE) 	 Compelling technology Testing and demonstration Strong reputation with leading Utilities
2	Standards Development	Establish industry standard	 Early deployments Joint standards Development 	 Key grid standards bodies include IEEE and ASME Technical associations that include vendors, users, and researchers try to influence standards Regulators may also establish working groups to sort out the emerging standard Validity data 	• Links to standards bodies and Regulators
3	Standards Deployment	Generate standard technical specificati on	 Incorporation into functional requirements Standards education Regulations, mandates & Incentives 	 Integrators and manufacturers begin incorporating the standard • Regulators are lobbied to increase adoption by removing barriers, developing mandates or adding incentives Note: Many standards never make it to full deployment 	 Marquee reference customers Central role in consortia or platform efforts
4	Product Acceptance	Integrate into establishe d buying practices	 Incorporation into new products Broad set of utilities begin considering Core requirements stabilized, yet differentiation remains 	 Utilities begin broader integration of the standard into specifications for new purchases Opinion-leading utilities monitored carefully as models of why and how to implement these technologies 	 Brand presence Financial strength Product and market alliances

Reference : The Emerging Smart Grid, GLOBAL ENVIRONMENT FUND, 2005

Ŵ

Standard structure of smart grid technology in Taiwan

Industry Association of Taiwan's smart grid planning standard structure of smart grid technology, with the intention of facilitating the involvement of the industry.

 Intelligent Generation 1. Coordination of conventional power network source 2. New energy generation and network 3. Large scale energy storage systems facilitate network 	 Flexi trans Flexi Trans Line Oper Envin 	t smission bility DC mission ble AC smission Status and rational ronment itoring	Smart Electric substation 1. Smart Electric substation (Taipower > Electric ALLIS ELECTION	on ctrical on Fortune	Intelligent Distribution1.Distribution Automation2.Distributed power grid3.Distributed energy storage systems and network(Tatung Company \ Chung Hsin Electric & Machinery Mfg. Corp. \ ALLIS ELECTRIC CO.)	
Information and communications1. Transmission network1. Distribution and User-side communication network2. Services Network3. Communications support network		Smart Power Consumption •Two-way interactive services •Electricity information collection •Smart electricity services •Electric vehicles charge –		 Intelligent transmission 1. Smart grid scheduling support system 2. Grid operation control 		
 Smart grid information infrastructure platform Smart grid information application platform Information and Communication Security (Chunghwa Telecom Institute for Information Industry) 		discharge •Intelligent me (Tatung Comp Hsin Electric of Mfg. Corp.) Technologies,	J		 comprehensive planning 1. Terminology and methodology of the smart grid 2. Smart grid planning and design 	

Thank You for Your Listening!

